MATH 245 F20, Exam 1 Solutions

1. Let b, c be odd integers. Without using theorems, prove that b(c-2) is odd.

Since *b*, *c* are odd, there exist integers *y*, *z* with b = 2y + 1, c = 2z + 1. We calculate b(c - 2) = (2y + 1)(2z - 1) = 4yz - 2y + 2z - 1 = 4yz - 2y + 2z - 2 + 1 = 2(2yz - y + z - 1) + 1. Since *y*, *z* are integers, so is 2yz - y + z - 1. Hence b(c - 2) is odd, being the sum of 1 with twice an integer.

2. Prove or disprove: For all propositions p, q, the proposition $(p \uparrow q) \downarrow (p \leftrightarrow q)$ is a contradiction.

 $p \uparrow q$ $p \leftrightarrow q$ $\frac{q}{T}$ $(p \uparrow q) \downarrow (p \leftrightarrow q)$ We look at the truth table at right, and see that \overline{T} Tthe last column is all F. Hence $(p \uparrow q) \downarrow (p \leftrightarrow$ TFТ F F $q) \equiv F$, and therefore $(p \uparrow q) \downarrow (p \leftrightarrow q)$ is a con-FTTFFtradiction. FTTFF

3. Let p, q, r, s be propositions. Prove that $p \lor q, q \land r, p \to s \vdash q \lor s$.

We begin by assuming that $p \lor q, q \land r$, and $p \to s$ are all true.

SOLUTION 1: We only need the hypothesis $q \wedge r$. By simplification, q. By addition, $q \vee s$.

SOLUTION 2: We have two cases, based on $p \lor q$. Case 1: If p is true, we apply modus ponens to $p \to s$ to get s. By addition, $q \lor s$. Case 2: If instead q is true, we directly apply addition to get $q \lor s$. In both cases $q \lor s$ holds.

SOLUTION 3: It is also possible to do this with a huge truth table (16 rows!). NOT RECOMMENDED

4. Prove the following without truth tables: For any propositions p, q, r, s, we have $p \to q, q \to r, r \to s \vdash p \to s$.

We begin by assuming that $p \to q, q \to r, r \to s$ are all true.

We consider two cases: q might be T or F. If q is F, then by modus tollens with $p \to q$, we have $\neg p$. By addition, $s \lor \neg p$. If instead q is T, then by modus ponens with $q \to r$, we have q. By modus ponens with $r \to s$, we have s. By addition, $s \lor \neg p$.

In both cases, we get $s \vee \neg p$. Finally, by conditional interpretation, we get $p \to s$.

It is also possible to do this using different cases, such as p being T or F.

- 5. Let $x \in \mathbb{R}$. Prove that if x^2 is irrational, then x is irrational. We use a contrapositive proof. Assume that x is rational. Then there are integers a, b with $b \neq 0$ and $x = \frac{a}{b}$. We have $x^2 = \frac{a^2}{b^2}$. Note that a^2, b^2 are integers (since a, b are), and $b^2 \neq 0$ (since $b \neq 0$). Hence x^2 is rational.
- 6. Fix our domain to be Z for all variables. Simplify the following proposition as much as possible (where nothing is negated): ¬ ∀x ∀y ∃z (x < y) → (x < z ≤ y).
 We first pull the negation inside the quantifiers: ∃x ∃y ∀z ¬ ((x < y) → (x < z ≤ y)).
 We now apply Theorem 2.16 to get: ∃x ∃y ∀z (x < y) ∧ ¬(x < z ≤ y).
 We interpret the double inequality (see p.11) to get: ∃x ∃y ∀z (x < y) ∧ ¬((x < z) ∧ (z ≤ y)).
 We apply De Morgan's Law (for propositions) to get: ∃x ∃y ∀z (x < y) ∧ ¬((x < z)) ∨ (¬(z ≤ y))).
 We now simplify to get our answer: ∃x ∃y ∀z (x < y) ∧ ((x ≥ z) ∨ (z > y))).
 NOTE: ((x ≥ z) ∨ (z > y)) cannot be combined to a double inequality, but it is possible to use distributivity to get the alternative answer ∃x ∃y ∀z (z ≤ x < y) ∨ (x < y < z).
- 7. Prove or disprove this proposition: $\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z}, (x \neq y) \land (y|x)$. The statement is true, and we will supply a direct proof. Let $x \in \mathbb{Z}$ be arbitrary. We have two cases, based on whether x = 0. NOTE: it is not possible to pick a single y that works for every x.

If x = 0, choose y = 5. We have $x \neq y$ and 0 = (0)(5), so y|x.

If $x \neq 0$, choose y = -x. We have $x \neq y$, since otherwise x = y = -x and so x = -x but $x \neq 0$. Also x = (-1)(y), so y|x.