MATH 245 F20, Exam 1 Solutions

1. Let b, ¢ be odd integers. Without using theorems, prove that b(c — 2) is odd.

Since b, ¢ are odd, there exist integers y,z with b = 2y + 1,¢ = 2z + 1. We calculate b(c — 2) =
Qu+1)(2z—1)=4yz—2y+22—1=4yz—2y+22—2+1=22yz—y+ 2z —1) + 1. Since y, z are
integers, so is 2yz — y + z — 1. Hence b(c — 2) is odd, being the sum of 1 with twice an integer.

2. Prove or disprove: For all propositions p, g, the proposition (p 1 ¢) | (p +> ¢) is a contradiction.

We look at the truth table at right, and see that P ¢ plq p<q (1ol q)
the last column is all F. Hence (p t¢q) | (p+ T T F T F
q) = F, and therefore (p 1 q) | (p <> ¢)isacon- 1T F T F F
tradiction. F T T F F

F F T T F

3. Let p,q,r, s be propositions. Prove that pV q,q Ar,p — sk qV s.
We begin by assuming that pV q,q A r, and p — s are all true.
SOLUTION 1: We only need the hypothesis ¢ A r. By simplification, g. By addition, ¢V s.

SOLUTION 2: We have two cases, based on pV q. Case 1: If p is true, we apply modus ponens to
p — s to get s. By addition, gV s. Case 2: If instead ¢ is true, we directly apply addition to get q V s.
In both cases ¢ V s holds.

SOLUTION 3: It is also possible to do this with a huge truth table (16 rows!). NOT RECOMMENDED

4. Prove the following without truth tables: For any propositions p, q,r, s, we have p — q,q — r,7r — s F
D —> 8.
We begin by assuming that p — ¢,q — r,r — s are all true.
We consider two cases: ¢ might be T or F. If ¢ is F, then by modus tollens with p — ¢, we have —p.
By addition, sV —p. If instead ¢ is T, then by modus ponens with ¢ — 7, we have q. By modus ponens
with r — s, we have s. By addition, sV —p.

In both cases, we get s V —p. Finally, by conditional interpretation, we get p — s.

It is also possible to do this using different cases, such as p being T or F.

5. Let x € R. Prove that if 2 is irrational, then z is irrational.
We use a contrapositive proof. Assume that x is rational. Then there are integers a,b with b # 0 and
x = %. We have 22 = 2—;. Note that a2, b? are integers (since a, b are), and b? # 0 (since b # 0). Hence
22 is rational.

6. Fix our domain to be Z for all variables. Simplify the following proposition as much as possible (where
nothing is negated): = Vz Yy 3z (z <y) = (z < z < y).
We first pull the negation inside the quantifiers: 3z Jy Vz = ((z <y) — (x < z < y)).
We now apply Theorem 2.16 to get: 3z Jy Vz (z < y) A —~(z < 2 < y).
We interpret the double inequality (see p.11) to get: 3z Jy Vz (z < y) A ~((x < 2) A (2 < y)).
We apply De Morgan’s Law (for propositions) to get: 3z Jy Vz (x < y) A ((—=(z < 2)) V (=(z < y))).
We now simplify to get our answer: 3z Jy Vz (z < y) A ((z > 2) V (2 > y)).
NOTE: ((x > z) V (¢ > y)) cannot be combined to a double inequality, but it is possible to use
distributivity to get the alternative answer 3x Jy Vz (z <z <y) V (z <y < 2).

7. Prove or disprove this proposition: Va € Z, Iy € Z, (z # y) A (y|z).
The statement is true, and we will supply a direct proof. Let x € Z be arbitrary. We have two cases,
based on whether x = 0. NOTE: it is not possible to pick a single y that works for every .
If =0, choose y = 5. We have z # y and 0 = (0)(5), so y|z.

If x # 0, choose y = —x. We have x # y, since otherwise z = y = —x and so z = —x but = # 0. Also
z = (=1)(y), so ylz.



