MATH 245 F20, Exam 1 Solutions

1. Let b, c be odd integers. Without using theorems, prove that $b(c-2)$ is odd.

Since b, c are odd, there exist integers y, z with $b=2 y+1, c=2 z+1$. We calculate $b(c-2)=$ $(2 y+1)(2 z-1)=4 y z-2 y+2 z-1=4 y z-2 y+2 z-2+1=2(2 y z-y+z-1)+1$. Since y, z are integers, so is $2 y z-y+z-1$. Hence $b(c-2)$ is odd, being the sum of 1 with twice an integer.
2. Prove or disprove: For all propositions p, q, the proposition $(p \uparrow q) \downarrow(p \leftrightarrow q)$ is a contradiction.

We look at the truth table at right, and see that the last column is all F. Hence $(p \uparrow q) \downarrow(p \leftrightarrow$ $q) \equiv F$, and therefore $(p \uparrow q) \downarrow(p \leftrightarrow q)$ is a contradiction.

p	q	$p \uparrow q$	$p \leftrightarrow q$	$(p \uparrow q) \downarrow(p \leftrightarrow q)$
T	T	F	T	F
T	F	T	F	F
F	T	T	F	F
F	F	T	T	F

3. Let p, q, r, s be propositions. Prove that $p \vee q, q \wedge r, p \rightarrow s \vdash q \vee s$.

We begin by assuming that $p \vee q, q \wedge r$, and $p \rightarrow s$ are all true.
SOLUTION 1: We only need the hypothesis $q \wedge r$. By simplification, q. By addition, $q \vee s$.
SOLUTION 2: We have two cases, based on $p \vee q$. Case 1: If p is true, we apply modus ponens to $p \rightarrow s$ to get s. By addition, $q \vee s$. Case 2: If instead q is true, we directly apply addition to get $q \vee s$. In both cases $q \vee s$ holds.
SOLUTION 3: It is also possible to do this with a huge truth table (16 rows!). NOT RECOMMENDED
4. Prove the following without truth tables: For any propositions p, q, r, s, we have $p \rightarrow q, q \rightarrow r, r \rightarrow s \vdash$ $p \rightarrow s$.
We begin by assuming that $p \rightarrow q, q \rightarrow r, r \rightarrow s$ are all true.
We consider two cases: q might be T or F . If q is F , then by modus tollens with $p \rightarrow q$, we have $\neg p$. By addition, $s \vee \neg p$. If instead q is T , then by modus ponens with $q \rightarrow r$, we have q. By modus ponens with $r \rightarrow s$, we have s. By addition, $s \vee \neg p$.
In both cases, we get $s \vee \neg p$. Finally, by conditional interpretation, we get $p \rightarrow s$.
It is also possible to do this using different cases, such as p being T or F .
5. Let $x \in \mathbb{R}$. Prove that if x^{2} is irrational, then x is irrational.

We use a contrapositive proof. Assume that x is rational. Then there are integers a, b with $b \neq 0$ and $x=\frac{a}{b}$. We have $x^{2}=\frac{a^{2}}{b^{2}}$. Note that a^{2}, b^{2} are integers (since a, b are), and $b^{2} \neq 0$ (since $b \neq 0$). Hence x^{2} is rational.
6. Fix our domain to be \mathbb{Z} for all variables. Simplify the following proposition as much as possible (where nothing is negated): $\neg \forall x \forall y \exists z(x<y) \rightarrow(x<z \leq y)$.
We first pull the negation inside the quantifiers: $\exists x \exists y \forall z \neg((x<y) \rightarrow(x<z \leq y))$.
We now apply Theorem 2.16 to get: $\exists x \exists y \forall z(x<y) \wedge \neg(x<z \leq y)$.
We interpret the double inequality (see p.11) to get: $\exists x \exists y \forall z(x<y) \wedge \neg((x<z) \wedge(z \leq y))$.
We apply De Morgan's Law (for propositions) to get: $\exists x \exists y \forall z(x<y) \wedge((\neg(x<z)) \vee(\neg(z \leq y)))$. We now simplify to get our answer: $\exists x \exists y \forall z(x<y) \wedge((x \geq z) \vee(z>y))$.
NOTE: $((x \geq z) \vee(z>y))$ cannot be combined to a double inequality, but it is possible to use distributivity to get the alternative answer $\exists x \exists y \forall z(z \leq x<y) \vee(x<y<z)$.
7. Prove or disprove this proposition: $\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z},(x \neq y) \wedge(y \mid x)$.

The statement is true, and we will supply a direct proof. Let $x \in \mathbb{Z}$ be arbitrary. We have two cases, based on whether $x=0$. NOTE: it is not possible to pick a single y that works for every x.
If $x=0$, choose $y=5$. We have $x \neq y$ and $0=(0)(5)$, so $y \mid x$.
If $x \neq 0$, choose $y=-x$. We have $x \neq y$, since otherwise $x=y=-x$ and so $x=-x$ but $x \neq 0$. Also $x=(-1)(y)$, so $y \mid x$.

