
MATH 245 F20, Exam 1 Solutions

1. Let b, c be odd integers. Without using theorems, prove that b(c− 2) is odd.

Since b, c are odd, there exist integers y, z with b = 2y + 1, c = 2z + 1. We calculate b(c − 2) =
(2y + 1)(2z − 1) = 4yz − 2y + 2z − 1 = 4yz − 2y + 2z − 2 + 1 = 2(2yz − y + z − 1) + 1. Since y, z are
integers, so is 2yz − y + z − 1. Hence b(c− 2) is odd, being the sum of 1 with twice an integer.

2. Prove or disprove: For all propositions p, q, the proposition (p ↑ q) ↓ (p↔ q) is a contradiction.

We look at the truth table at right, and see that
the last column is all F . Hence (p ↑ q) ↓ (p ↔
q) ≡ F , and therefore (p ↑ q) ↓ (p ↔ q) is a con-
tradiction.

p q p ↑ q p↔ q (p ↑ q) ↓ (p↔ q)
T T F T F
T F T F F
F T T F F
F F T T F

3. Let p, q, r, s be propositions. Prove that p ∨ q, q ∧ r, p→ s ` q ∨ s.
We begin by assuming that p ∨ q, q ∧ r, and p→ s are all true.
SOLUTION 1: We only need the hypothesis q ∧ r. By simplification, q. By addition, q ∨ s.

SOLUTION 2: We have two cases, based on p ∨ q. Case 1: If p is true, we apply modus ponens to
p→ s to get s. By addition, q ∨ s. Case 2: If instead q is true, we directly apply addition to get q ∨ s.
In both cases q ∨ s holds.

SOLUTION 3: It is also possible to do this with a huge truth table (16 rows!). NOT RECOMMENDED

4. Prove the following without truth tables: For any propositions p, q, r, s, we have p → q, q → r, r → s `
p→ s.

We begin by assuming that p→ q, q → r, r → s are all true.
We consider two cases: q might be T or F. If q is F, then by modus tollens with p → q, we have ¬p.
By addition, s∨¬p. If instead q is T, then by modus ponens with q → r, we have q. By modus ponens
with r → s, we have s. By addition, s ∨ ¬p.

In both cases, we get s ∨ ¬p. Finally, by conditional interpretation, we get p→ s.

It is also possible to do this using different cases, such as p being T or F.

5. Let x ∈ R. Prove that if x2 is irrational, then x is irrational.
We use a contrapositive proof. Assume that x is rational. Then there are integers a, b with b 6= 0 and

x = a
b . We have x2 = a2

b2 . Note that a2, b2 are integers (since a, b are), and b2 6= 0 (since b 6= 0). Hence
x2 is rational.

6. Fix our domain to be Z for all variables. Simplify the following proposition as much as possible (where
nothing is negated): ¬ ∀x ∀y ∃z (x < y)→ (x < z ≤ y).

We first pull the negation inside the quantifiers: ∃x ∃y ∀z ¬ ((x < y)→ (x < z ≤ y)).
We now apply Theorem 2.16 to get: ∃x ∃y ∀z (x < y) ∧ ¬(x < z ≤ y).
We interpret the double inequality (see p.11) to get: ∃x ∃y ∀z (x < y) ∧ ¬((x < z) ∧ (z ≤ y)).
We apply De Morgan’s Law (for propositions) to get: ∃x ∃y ∀z (x < y) ∧ ((¬(x < z)) ∨ (¬(z ≤ y))).
We now simplify to get our answer: ∃x ∃y ∀z (x < y) ∧ ((x ≥ z) ∨ (z > y)).
NOTE: ((x ≥ z) ∨ (z > y)) cannot be combined to a double inequality, but it is possible to use
distributivity to get the alternative answer ∃x ∃y ∀z (z ≤ x < y) ∨ (x < y < z).

7. Prove or disprove this proposition: ∀x ∈ Z, ∃y ∈ Z, (x 6= y) ∧ (y|x).

The statement is true, and we will supply a direct proof. Let x ∈ Z be arbitrary. We have two cases,
based on whether x = 0. NOTE: it is not possible to pick a single y that works for every x.

If x = 0, choose y = 5. We have x 6= y and 0 = (0)(5), so y|x.

If x 6= 0, choose y = −x. We have x 6= y, since otherwise x = y = −x and so x = −x but x 6= 0. Also
x = (−1)(y), so y|x.


